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In the motion of a satellite near the earth, an important
force, in addition to the gravitational force, is that due to
atmospheric drag. If it is assumed that the drag force is
tangential to the path and proportional to the density and to
the square of the speed, then the basic equations in the
original variables can be written as

dr/diz — r(dd/db)? + K/r* =
(—CoA/2m)p(dr/dt) [(dr/dE)* + r*(dd/dt)*]2

(1/7r)(d/de) (r*dd/dt) =
(—CpA/2m) pr(dd/dt) [(dr/dE)? + r2(dd/di)]v?

where p is the density, m the mass of the satellite, A the
normal cross-sectional area, and Cp the drag coefficient as-
sumed as constant.

If the satellite is sufficiently high, then the drag terms may
be dropped, and the analysis leads to the usual Kepler re-
sults; if the satellite is near the re-entry condition, then the
drag forces will dominate the gravitational forces, and sim-
plifying assumptions can be made.* However, in the studies
of the lifetime of a satellite, or in orbital studies where it is
assumed that the satellite is several revolutions away from
the re-entry condition, the accurate inclusion of the drag
terms becomes necessary.

Roberson® analyzed Egs. (2) by a formal perturbation
procedure after the introduction of new variables. Since
the quantity z in Eq. (1) is constant in the drag-free-case,
it is to be expected that this quantity would vary slowly as a
function of the time in the presence of drag forces. Roberson
used R/r and KR/(r*dd/dt)? as new variables and was able
to reduce the original equations to a second-order equation
that was linear and a first-order equation. However, Rober-
son used only one dynamical invariant in the analysis. It
has been noted that there are two components of velocity
which are invariant in the two-body motion. Without any
essential restriction in generality, the dynamical equations
can be written for the case of constant tangéntial thrust; the
modifications in the case of drag are clear.

It is of interest to change to dimensionless variables; the
dimensionless time 7 = (R/g)'%, where g is the acceleration
due to gravity at the surface of a spherical earth, and the
dimensionless velocity is V, where » = (gR)Y¥2V. The non-
dimensional measure of the thrust may be denoted by wu.
The dynamical equations in (2) may be written as

d*p/dr* — p(dd/dr)* + (1/p*) = w(dp/dr)/V

p(d*¥/dr?) + 2(dp/dr)(dd/dr) = up(dd/dr)/V

If the definitions used in Eqgs. (1) are used in Eqgs. (3), one
may write

®3)

p = &/(x + y cose)
dp/dr = y sind “)
d¥/dr = (x + y cos$)2/z

The first relation in Eqgs. (4) shows that, for constant (x,y,2),
p is in the correct polar form for the equation of the undis-
turbed orbit. In the Kepler case these constants are known,
and the orbit is fixed. In the case of small thrust or drag,
(z,9,2) should be slowly varying functions of ¢ and therefore
of the time ¢£. There are several advantages to be gained
from working with the orbital equations in the form of Egs.
(4); the first equation, for example, gives the instantaneous
ellipse at any instant of time if (z,5,2) are known at that
time. Also (y/z) is the instantaneous eccentricity of the
orbit. The functions (z,y,2) can be determined successively
from the solution of first-order equations; in each case the
starting approximations are known constants.

To indicate the work briefly, the first and second equations
of (4) must be related; if primes denote differentiations
with respect to the angle ¢, this relation can be written as

2’z + y'z cos(@) — 2'(x + y cosd) = 0 (5)
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The second relation is determined conveniently by dividing
the left and right sides, respectively, of Egs. (3). This
equation ultimately? can be written as

y'(—zsind) + 2/ (—y sind) = 1 — 22 (6)

Equation (5), of course, does not depend upon dynamical
considerations; in the Kepler case z = 1, and the right side
of Eq. (6) vanishes for the starting approximation. This
equation does not depend upon the force law, but the force is -
required to remain tangential to the orbit. This equation
does not involve the density, magnitude of the velocity, or
any thrust parameter. The third and final equation does
involve the thrust parameter:

2’ = w2?/V)/(x + y cosd)? (7)

The three first-order equations in (z,y,2) as functions of & are
Eqs. (6-7).

It now is assumed that the solutions may be written in the
form of the perturbation series solution:

(@) x + pr(d) + pind) + ...
y@)  yo + pn(@) + pi(® + . .. )]
2 20+ pz(®) + uz(®) + ...

and it is known that, if u = 0, z,y, and z are constants [Eqs.
(1)]. The terms with subscripts unity then can be written
down in terms of integrals of known functions.
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Commentis

Errata

Morris MorpucHOW?
Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

AND
StanLEY P. REYLET
Rutgers University, New Brunswick, N. J.

HE authors would like to call attention to the following

misprints that appeared in the paper “On Calculations
of the Laminar Separation Point, and Results for Certain
Flows,” by Morris Morduchow and Stanley P. Reyle, in the
Readers’ Forum of the Journal of the Aerospace Sciences,
August 1962, p. 996.

In Eq. (2), the exponent should read “1/(6.13n-1).” In
Eq. (3), the exponent should read “1/(6.13n + 1).”” In the
fourth line after Eq. (3), the beginning of the sentence should
read “For u3/Ue =1 — £(n>0)....7
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